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ABSTRACT Theoretical variance #1 ( ̂Theo1) has been
developed at NIST to improve the estimation of long-
term frequency stability. Its square-root ( ̂Theo1-dev) has
two significant improvements over the Allan deviation
σ̂y(τ) (Adev) in estimating long-term frequency stability,
in that (1) it can evaluate frequency stability at averag-
ing times 50 % longer than those of Adev, and (2) it can
estimate frequency stability with greater confidence than
any other estimator. We discuss a method for determin-
ing the exact confidence intervals of ̂Theo1, particularly
useful for small sample sizes, using analytic techniques.
The confidence intervals of ̂Theo1 are narrower and less
skewed (more symmetric) than confidence intervals based
on chi-square.

I. Introduction and Summary

An important challenge of characterizing oscillators is
accurately determining frequency stability at long-term
averaging times. For a given data run of length T, the
two-sample Allan deviation σ̂y(τ), or Adev, can estimate
frequency stability only up to averaging times of T/2 and
at that value with minimal confidence [1, 2, 3]. This paper
is about ̂Theo1, a special-purpose, multi-sample statistic
that evaluates very-long-term frequency stability at τ in-
tervals between T

2 and T whose average is 3T
4 , or a maxi-

mum stride of τs = 0.75(T −τ0), where τ0 is the sampling
period between adjacent observations. ̂Theo1 was devel-
oped following studies of an improved estimator of Adev
called Total deviation, or “Totdev” [3, 4, 5, 6, 7, 8]. For-
merly, we have based confidence intervals for Totdev and̂Theo1 on a chi-square distribution with equivalent de-
grees of freedom, ν, where the equivalent degrees of free-
dom are found by simulation. Compared to Adev, Totdev
has less skew in its confidence intervals [5, 7]. Presently,̂Theo1 has the highest confidence in estimating long-term
frequency stability [9, 10]. In the study here, we found
that ̂Theo1’s distribution function is both narrower and
more symmetric than that of chi-square. Confidence in-
tervals computed analytically for various sample sizes are
consistent with simulation studies.
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II. ̂Theo1 Definition

It is common practice to measure samples of the time-
error function x(t) between two oscillators and then de-
rive frequency stability [1, 2, 3]. Starting with a sequence
of time-error samples {xt : t = 1, 2, . . . , n} with a sam-
pling period τ0, ̂Theo1 averages every permissible squared
second difference of time errors in a given span or stride
τs = 0.75kτ0. τs has the same meaning as the traditional
sampling interval τ in the σ̂2

y(τ), the traditional estimator
of the Allan variance. Let us start with the equation for̂Theo1, the estimator of Theo1 [9, 10]:

̂Theo1(τ = 0.75kτ0) =
4

3(n − k + 1)(kτ0)2

n∑
t=k

k
2∑

δ=1

1
δ
[(xt − xt−δ) − (xt−k+δ − xt−k)]2, (1)

where k is even. In this equation, ̂Theo1 is in terms of
phase data, and we have the usual relation to frequency
data. We want to express ̂Theo1 in a quadratic form
[11, 12, 13]. We start by defining:

yt =
xt − xt−1

τ0
, t = 1, 2, . . . , n (2)

yt(δ) =
1
δ

δ−1∑
j=0

yt−j . t = δ, δ + 1, . . . , n (3)

=
xt − xt−δ

δτ0
. (4)

Then we can write (1) as

̂Theo1(τ = 0.75kτ0) =
4

3(n − k + 1)k2

n∑
t=k

k
2∑

δ=1

δ[yt(δ) − yt−k+δ(δ)]
2. (5)

Next, define

zt(k, δ) =

√
2δ

3k
(yt(δ)−yt−k+δ(δ)), δ = 1, 2, . . . ,

k

2
. (6)
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Then we have

̂Theo1(τ = 0.75kτ0) =
2

k(n − k + 1)

n∑
t=k

k
2∑

δ=1

[zt(k, δ)]2

=
1
m

n∑
t=k

k
2∑

δ=1

[zt(k, δ)]2, (7)

where m ≡ (n − k + 1) × k
2 .

III. Determining the Confidence Interval

Notice that the zt(k, δ)’s are a collection of m random
variables. Stack them into a single vector:

Z ≡



zk(k, 1)
zk(k, 2)

...
zk(k, k

2 )
zk+1(k, 1)
zk+1(k, 2)

...
zk+1(k, k

2 )
...

zn(k, 1)
zn(k, 2)

...
zn(k, k

2 )



.

We assume that Z is multivariate normal with covariance
matrix ΣZ, i.e., the (r, s)th element of ΣZ is the covariance
between the rth and sth members of Z. If Zl is the lth
element of Z, then we can write

̂Theo1(τ = 0.75kτ0) =
1
m

m∑
l=1

Z
2

l . (8)

The expected value of this estimator defines a population
quantity that we denote as Theo1:

Theo1(τ = 0.75kτ0) ≡ E{ ̂Theo1(τ = 0.75kτ0)} (9)

=
1
m

m∑
l=1

E{Z2

l }. (10)

Define

Qm =
m ̂Theo1(τ = 0.75kτ0)
Theo1(τ = 0.75kτ0)

=
∑m

l=1 Zl
2

Theo1(τ = 0.75kτ0)
.

(11)
Let qp be the pth quantile of the distribution of Qm:

Fm(qp) ≡ P [Qm ≤ qp] = p. (12)

Then a (1 − 2p) × 100% confidence interval for Theo1 is
given by[

m ̂Theo1(τ = 0.75kτ0)
q1−p

,
m ̂Theo1(τ = 0.75kτ0)

qp

]
. (13)

The random variable Qm is a quadratic form in m normal
variables. We can determine the distribution once we
transform it into the standardized form,

Qm =
m∑

l=1

λlUl
2, (14)

where the Ul’s are independent chi-square random vari-
ables, each with one degree of freedom, and the λl’s are
the eigenvalues of a normalized version of ΣZ.

Once the covariance matrix has been normalized and
the eigenvalues are known, we can numerically evaluate
Fm(x) in one of two ways. Expanding Fm(x) in terms of
the sums of the distribution function of central chi-square
random variables works well for small n [12]. As n gets
large, a more efficient means is by numerical inversion of
the characteristic function [13].

IV. Example Calculation

We let n = 6, k = 4, and assume that our data are
random walk frequency modulation (RWFM). We have

Z ≡


z4(4, 1)
z4(4, 2)
z5(4, 1)
z5(4, 2)
z6(4, 1)
z6(4, 2)

 ,

and

ΣZ =

 E{z2
4(4, 1)} E{z4(4, 1)z4(4, 2)} E{z4(4, 1)z5(4, 1)}

E{z4(4, 2)z4(4, 1)} E{z2
4(4, 2)} E{z4(4, 2)z5(4, 1)}

E{z5(4, 1)z4(4, 1)} E{z5(4, 1)z4(4, 2)} E{z2
5(4, 1)}

E{z5(4, 2)z4(4, 1)} E{z5(4, 2)z4(4, 2)} E{z5(4, 2)z5(4, 1)}
E{z6(4, 1)z4(4, 1)} E{z6(4, 1)z4(4, 2)} E{z6(4, 1)z5(4, 1)}
E{z6(4, 2)z4(4, 1)} E{z6(4, 2)z4(4, 2)} E{z6(4, 2)z5(4, 1)}

E{z4(4, 1)z5(4, 2)} E{z4(4, 1)z6(4, 1)} E{z4(4, 1)z6(4, 2)}
E{z4(4, 2)z5(4, 2)} E{z4(4, 2)z6(4, 1)} E{z4(4, 2)z6(4, 2)}
E{z5(4, 1)z5(4, 2)} E{z5(4, 1)z6(4, 1)} E{z5(4, 1)z6(4, 2)}

E{z2
5(4, 2)} E{z5(4, 2)z6(4, 1)} E{z5(4, 2)z6(4, 2)}

E{z6(4, 1)z5(4, 2)} E{z26(4, 1)} E{z6(4, 1)z6(4, 2)}
E{z6(4, 2)z5(4, 2)} E{z6(4, 2)z6(4, 1)} E{z2

6(4, 2)}

 .

We need to determine the entries of ΣZ. We note first
that if we define

zt(k − δ) =
k−δ−1∑

i=0

zt−i, (15)

where {zt} is the first difference of our frequency data,
then we can write

zt(k, δ) =

√
2

3δk

δ−1∑
j=0

zt−j(k−δ) =

√
2

3δk

δ−1∑
j=0

k−δ−1∑
i=0

zt−j−i.

(16)
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Hence, we have

z4(4, 1) =
√

2
2
√

3

2∑
i=0

z4−i =
√

2
2
√

3
(z2 + z3 + z4),

z4(4, 2) =
√

2
2
√

6

1∑
j=0

1∑
i=0

z4−j−i =
√

2
2
√

6
(z2 + 2z3 + z4),

etc. Since we are assuming that yt is a random-walk
process, then zt is Gaussian white noise with zero mean
and unit variance; i.e.,

E{ztzt′} =
{

1, t = t′

0, t �= t′ .

We can evaluate the covariances of ΣZ easily; for ex-
ample,

E{z4(4, 1)z4(4, 2)}

=

( √
2

2
√

3

)( √
2

2
√

6

)
E{(z2 + z3 + z4)(z2 + 2z3 + z4)}

=
1

6
√

2
E{z2

2 + 2z3
2 + z4

2 + 3z2z3 + 2z2z4 + 3z3z4}

=
1

6
√

2
(1 + 2 + 1 + 0 + 0 + 0) =

4
6
√

2
=

4
√

2
12

.

Continuing in this manner we obtain

ΣZ =
1
12



6 4
√

2 4 3
√

2 2
√

2
4
√

2 6 3
√

2 4
√

2 1
4 3

√
2 6 4

√
2 4 3

√
2

3
√

2 4 4
√

2 6 3
√

2 4
2

√
2 4 3

√
2 6 4

√
2√

2 1 3
√

2 4 4
√

2 6

 .

Table 1: Quantiles for RWFM noise
n k q0.025 q0.050 q0.159 q0.841 q0.950 q0.975

4 2 0.2158 0.3519 0.8353 5.181 7.815 9.349
4 4 0.01731 0.03604 0.1392 3.912 7.521 9.819
8 2 1.690 2.167 3.445 10.56 14.07 16.01
8 4 1.126 1.563 3.001 16.98 26.57 32.43
8 8 0.04927 0.08475 0.2753 7.830 15.06 19.66
16 2 6.262 7.261 9.653 20.35 25.00 27.49
16 4 6.994 8.602 12.94 39.05 52.99 60.97
16 8 3.641 4.993 9.726 62.12 100.4 124.2
16 16 0.09317 0.1594 0.5288 15.68 30.18 39.14
32 2 17.54 19.28 23.22 38.78 44.99 48.23
32 4 25.07 28.66 37.39 78.60 97.50 107.8
32 8 24.76 30.74 47.28 152.7 210.9 244.5
32 16 12.39 17.22 34.53 236.7 388.3 483.3
32 32 0.1769 0.3066 1.039 31.38 60.42 78.55
64 2 42.95 45.74 51.85 74.15 82.53 86.83
64 4 69.92 76.44 91.37 152.6 178.0 191.4

From equation (10), we also have Theo1(τ =
0.75kτ0) = 1/2; i.e., this is given by the diagonal elements
of ΣZ. We obtain

Qm =
∑m

l=1 Zl
2

Theo1(τ = 0.75kτ0)
= 2

m∑
l=1

Zl
2
.

The next step is to determine the eigenvalues of ΣZ, and
once that is done we use one of the aforementioned numer-
ical techniques to calculate the quantiles q0.159 = 1.252
and q0.841 = 10.69. The (1 − 2(0.159)) × 100 % = 68.2 %
confidence interval is thus[

6 ̂Theo1(τ = 0.75kτ0)
q0.841

,
6 ̂Theo1(τ = 0.75kτ0)

q0.159

]
=
[
0.561 ̂Theo1(τ = 0.75kτ0), 4.79 ̂Theo1(τ = 0.75kτ0)

]
.

Quantiles corresponding to 68.2 %, 90 %, and 95 % con-
fidence intervals and for various sample sizes are shown
in Table 1 and are consistent with simulation studies.

V. Comparison to Chi-Square

Traditionally, the confidence intervals of ̂Theo1 and
similar statistics have been approximated by assuming
a chi-square distribution with equivalent degrees of free-
dom, ν, where the equivalent degrees of freedom are found
by simulation. Equations for the number of degrees of
freedom for ̂Theo1 can be found in [8] and for Adev in
[14, 15]. With this approximation, a (1 − 2p) × 100 %
confidence interval is given by[

ν ̂Theo1(τ = 0.75kτ0)
χ2

ν;1−p

,
ν ̂Theo1(τ = 0.75kτ0)

χ2
ν;p

]
,

where χ2
ν;p represents the pth quantile of the distribution

of a chi-square random variable with ν degrees of freedom.
We find that the exact confidence intervals of ̂Theo1 are
less skewed than confidence intervals based on chi-square.
Ratios of the exact confidence to the approximation are
shown in Table 2 for the case of RWFM.

Table 2: Ratio of lengths of confidence intervals for
RWFM noise and various n and k. Notice that for each
n, as k gets large, the chi-square approximation becomes
increasingly inaccurate.

n k Ratio
32 2 0.93
32 4 0.88
32 8 0.74
64 2 0.97
64 4 0.93
64 8 0.86
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